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SUMMARY

This progress report summarizes the
research work perfoermed at  The Catholic
Univereity 0f America on the research
grant entitled "Active Control of Robot
Manipulatocr Compliance, " (Grant#: NAG
S5-780) 4 supported by NASA/Goddard space
Flight Center during the pericd of May
1S5th,s 1986 to November 15th, 1986.

In this report we Tirst present
the modelling of the two—degree—of-
freedom rabot. Then the complete system
including the vrobot and  the hybrid
controller 1s simulated on an  IBM-XT
Fersocnal Computer. Simulation results
showed that proper adjustments of
contraller opains enable the vobot  to
perform successful coperations. Further
research should focus onn developing a
guldeline for the controller gain design
to achileve csystem stability.
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1. INTRODUCTION

Robotice has many potential epace applications that
can be found in  the epace station research program [13,
such as autonomous vepair and replacement capability.
autcomated maintenance, etc. Orne of the most essential
robotic  tasks  1s the assembly of large strucutures  in
space. Froduct assembly in space such &as mating and
fastening of parte reguires & very high precision. There
is however & tolerance problem that exists  in assembly.
The positicnal tolerarnce of many assembly tasks are guite
tiah {thousands of  1inch), while those of & rvobat
manipulatore are only of the ordere of i1vch. To solve
thies problems compliance can be provided tc the
manipulator sc that 1t can comply with the task-imposed
constraint £231. Compliant moticon control is concerned with
the control of & vrobot in contact with ite environment
£31. Compliance can he provided passively by the
deformation of & mechanical structure, such as mechanical
spiring or actively by & contrel system employing force
csermcsors [4-53.

In many applicaticns,s there is a need for simultaneocus
control of positon and force. There are two approaches to

compliant motion control. Impedance or stiffrness control

[y




epecifies dynamic relationehips between force and position
but do not specify desired forceese or positicns [31.  Hybrid
contrel that controls position/orientation along specified
degrees of freedocm and independently controls force/torque
along the remaining degrees of freedom [&6]. The hybirid
contirel is more suitable for plamning & manipulator task
and in this report we will present the development of a
hybrid contreller (71 for & six-—degree-of-freedom vobaot
recently built &t NASA/GSFC [B1 to study robotic assembly
1n spaCce.

Since the dynamic eguations of a six—degree—of-freedom
robot i1 highly complicateds, we start cour design with a
two—degiree—of-freedom model . The resulte of simulated

system will be presented and discussed.

2. THE_NASA_ ROEOT

Recently & siw-degree-of-freedom robot was built at
the GODDARD SFPACE FLIGHT CENTER (GSFC) to study the
automated assembly of NASA hardware [831 for potential
applications in  the space station [11. The robot consists
mainly of & lower fived platform, an upper movable
platform and an intelligent end effector (IEE) (Fig. 14).
The movable platform is suppovted above the fixed platform
by =2ix axial vrode that are extensible by recivcoculating ball
screws. Six  stepper motors were used to devive the ball

screws and consequently the movable platform to provide

n



the gross motion of the IEE. The IEE is attached to
ancther platform suspended from the movable platform by
six epring-loaded plstons that provide passive compliance
to the IEE by permitting strain on twoe opposing springs
acting in the piston (Fig. 1IEY. Using force feedback. the
robot has been able to perform several assembly tasks such
as inszerting & peg into the heales screwing & bolt 1nte &
thieaded hole. However . since the compliance was provided
pascivelys the assembly process was very slow. for example.,
the robot took 3 minutes to complete the inserting of a
peg into & hole. Therefores research effort has been made
tc study the implementation of the hybrid control scheme
ivte the robot gsvetem so that the IEE compliance can be
provided actively by =iwn electromechanical actuators

replacing the existing spring-leoeaded pistons [1037.

3. THE_HYBRID CONTROL SCHEME

In many applications, it is necessary to contiral
simultanecusly position and force. Such contrel is

called hybrid controcl, that controls position /orientation

along specified degrees of freedom and i1ndependently
controale force/torque along the remaining degrees of
freedom. The degrees of freedom are in a Cartesian

coordinate system which i called the constraint frame and
iz denocted by the symbol [C3I [11--131. In =& hybirid
contraller scheme, each actuator contiol zigrnal is

composed of eseveral components, cne for each force



contrelled deovee of freedom in [C3 and one for each
position conticlled degree of freedom. The actuator

signal is computed by [71]:
T, =>4 s, 4 J+y, [(1-s ) AX 32 (1)
b 3] 1] ] J

Where
Ti=torque applied by the ith actuator
Af . =force ervor in jth degree of freedom of [C3.

J
A¥  =position erroy in jth degree of freedom of [C3J.
J

rij and vjj = force and position compensation functions,
respectively. for the jth input and the ;th cutput.
Sj=component of comliance selection vector.

The compliance selection vector S, is a binary N-tuple
that specifiesz which degrees in [CY &are under force
control (s3j3=1) and which are under poeition control
(233=0).

Fig. 2 1illustrates the 1implementation of the hybrid
contrel  scheme intoe existing NASA robot. The complete,
robot system coneists of a poeition senéor, a

siv—degree—of-freedom force sensors 12 controllers with &6

controllers for the position control loop and 6
contrellers for the force/torgue control looaps & linear
actuators and the NASA robot. The compliance celection

matrix is a (6ué) diagonal matrix.
Twe feedback loops compute evrvors  in both  applied

fTorce/torgue and actual position, with the lower loop



confrollinérthe féfée/tarqe. The two iﬁdeﬁéﬁdéﬁé fée&b;;k
loops with 6 contreollers,s provide the drive signals to the
actuatorelf10].

Current research does not precscribe particular control
lawz for the regulatiocn of errcrs [73. Therefores our
research objective 1is to make a comparative evaluation of
different types of control laws in order to select an
cepticnal set of contrellers for & particular robotic
assembly task. Dcoing this a guideline can be develocped for
the design of these controllers. The controllers and the
coordinate transformations are then i1mplemented on an

approapriate computer.

4. COORDINATE_ TRANSFORMATIONS

There are twoe coovrdinate tranmsformations vy one  for
transforming coovdinate from Cartesian speace inte joint
space, and one from joint to Cartecsian space. kith the
arrangement of the linear actuatocrs &= seen on Fig. 1, the
robot  does not have independent drive systems for each
dearee of freedom. The precision motion is achieved in all
degreecs of freedom by & combination of actuator externsion.
Therefoare, a transformation trarnsforming desired pozition

and crientation of the IEE into actuator extensions ig

needed. This problem 18 well-known as an inverse
kinematic problem [1S3 that in general » has non-unigue

sclutione and is very difficult to solve becsuse of

non—linearity. However, since the NASA robot has &

w



special configuration, ite inverse kinematic problem has
& unique cleosed-form solution.
On the other hand, the forward kinematic problem of

the NASA robot dees not have a closed-form sclution and is

sclved iteratively. As part of the hardware. six linear
voltage differential transformers (LVDT) are mounted
parallel +to the siy lirear actuatocrs to measuwe their

extensions. FPosition feedback is then achieved by taking
the actual extension available from measuwremevnts and
transforming them into the pesition and orientation of the
IEE. This problem is & forward kinematic problem of an
opern loop robot like the Stanford manipulator.

Fig. 3 shows the general crientation of the
mariipulater with twoe coordinaste eystems, and Fig. 4
1llustrates the vector relationships between the ovigins of
each coordinate system and the actuator attachment point
of each platform. These relaticnshipse vield the vector

equations

r =R +RK (2a)
i i

r =B +1 (2b)
i i i

Subtracting (2b) From (2a) and solvirng for 1 yields

i
1 =A +R-B (3)
i i i
where li is defined with respect toc the fixed reference
frame.
Since the known vectore A are defined with respect to

i,m



the moving frames we must apply an Euler angle

transformation 1n order to get the corresponding vector Ai
in the fixed refevrence frame. Applying this transformation
y we obtain

T
1.=[T1 A, _+R-E, (4)
i i,m i

In Equation (4) Ai and Ei are known constant vectors

'
and R and [T]Tare calculated from the given values of
¥sYsZs ¥y 6 and &.

The inverse could be obtained if the vectors li WeTr e
available, but LVDT measures only the magnitude of the
corresponding actuator length llil and not the
required vector. However, because of its closed-loop
configuwration, the forward kinematics problem of the NASH
roebot can be solved by solving six nonlinear equaticines
with =iy unknowns (Hsysz«¥. 0 and &). Newtorn—Raphson method
is employed to solve this problem [161.

The iteration formula has the form
=x — |-——————— flo ) (3)

Enowing the actual magnitude of the actuators. function

fi(u) can be defined as

— T 2 s N )
i (=1, 1i—|1i|a {&a

~J
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(6b)
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@ e M X

and

flaxd=].... (&C)

Lfs(oz)

and !li!a ie the actual magnitude of the actuator 1
chtained from measurement. Using an appropriate set of
initial conditions:s Equaticn () is repeasted until desired
accuracy is met.

The Newton-Raphson’s method has been applied in the
MNASA passive compliant robot system to update the position
of the compliant platform velative to the compliant base
and to compute the position of the movable platform with
respect to‘ the fixed platform [B1. This technique
regquires ample memory and enormous computation time.
Therefores 1t 1= csuggested to investigate other Newtorn-
Rapheson®s method. Some of these methods are known  as
Cuasi-Newton methods f17-181. The Newtorn—Raphson's
iteration diverges i1f the initial guess 1s ot close  to
& correct sclution [191. Using Newton—-Raphsorn—-Kantoirovich

thecorem {181 it is possible to find how close the initial



guess should be.Consequently, to assure the convergence of
the Newtorn—Raphson iteration it is necessary to implement
the Newton—Rapheson-Fantorovich theovrem using computer

csoftware [10].

5. The_2-DEGREE-OF-FREEDOM ROBOT

Ivi order to examine the performance of proposed hybirid
contral scheme, we begin cur study with the
d—-degree~of-—freedom rvobet since the dynamic  behavicur of
the complete six—degree-of—freedom robot is tighly
comple:x.

Fig. & illustrates a simplified wversion of the
phveical robot consisting of 2 linear actuators, 2 LVDT s,
2 force sensores and an IEE. The actuators avre comnected
to & fived platform using cne—degrese—cf-freedom gimbals.
The LVDT s avre mounted parallel to  the actuators to
measure the lengths 11 and 12. The 2 force sensore are
mouwnted 1n series with actustors to messuwre the reaction

forces in the direction of the actuator axes.

5.1 KINEMATICS OF THE MANIPULATOR

Manipulator kinematice i & study of the geometry of
maniculator arm  without regard to the forces which cause

it Im th

ey
L E K] 1iad

i

sectionm. the mathematicxl velasticns reguived
to describe the svstem motion and the fundamental sgquations

that govern kinematic behavior are devived.



S5.1.1 POSITON ANALYSIS

The positicon of the peoint F at the tip of the hand
with respect to the X-Y coordinate (Cartesian frame) 1is
kriowrs  if its horizontal and vertical projections . and vy

are krown [10]1. Howevers only the lengths H. and 12 are

knowr from  the LVDT's. From the geometry of Fig. 6. we

acbtain
2 2 2
s = 7
Moy 1l (7)
2 2 2
and (d—x) +vy =12 8)

where d is known from the geometry of the system. Since 1

and 1 are variables from measurements, we can rewrite

N

Egquat:ions (7)) and (8) &

n

2 2 2
Tolayd=mn o4y =1 =0 (9)
1l ’ 1
2 2 2
T {usy)=(d-u) +y —-1_ =0 (10)
2 2

To eclve these eguations for # and v, we can use iteration
techr.iques such as Newtorn—Raphson method which was

described in section 4. For 2-degree—-ocf-fresedom cases the

|
'S

bl e - U
by [ =

eguations can be solved by anali methaod. Simplifying
Equation (8) as

2 2 2 2

+y +d —de=12 (113

1M



2 2
and substituting (% +y ) from Equatiornz (7) intc (11}, we

ohtain

2dx=1 (i2)
+d d 5

Sciving for » vields

NU S S (13)

Subztituting the value of ¥ into Egquaticn (7)

e I +y =1 (14)

and =soclving for y we get

22 2 2 22%
Lad (1 -1, +d ) 1]
y=——'~11————11 ————— 2 (15)
2d

S.1.2 VELOCITY DERIVATION

A manipulator can, in generals be described as &
series of links cormected at joints. The angles between
the Iinks,s called the joint angles. are typical joint
variables. However, socme type of linke (prismatic joints)
can grow longer. and iv that case  the joint warilable may
actuslly be the length of the link (&1,

The position of all the links of & manipulator of 0N
degrees of freedom can be specified with a set of n joint

variables., Thic set of wvariables i often referved to as

1l



the nxl joint wvector. The space of a&all such rjoint
vectores 1s refervred to as joint space. There are three
representationes of & maviipulator s position and
crientation: descriptions in  actuator space, joint space
and Cartecian spacellS].

In eection S.1.1, we derived the binematic equationes
cf the hand in Cartesian coordinate system. The foirward
kivmematic transform for this manipulator relates  the X-Y
pesition of the hand to  the joint variables. For  our
2—-degree-cf-freedom robot with two priemetic actuators. the
joint variables can be chosen any of the following sets:

6 959 and (13, 1 ). As the LVDT's

(1 + 830, (1. O3y, ¢ 8,
can measure the lengthe (i} I ). we chose these varilables
as the joint wvariables. The i1nverse kinematic relates
the set of jocivt variables to the desived position and
cimientation of the hand relative to Carte=sian coordinates
(Egusticns (7)) and (&) ).

Im order to mocve the end-effector 1vn & specified
direction at & specified speedy 1t 1is necessary to
coordinate the motion of the individual joints. For this
purpoee we drive the differential relaticonships between
the jcint displacement and the hand lcoccation [32Z. The
velooity relaticonship between the joints and hand is
determinsed by the manipulator Jacobian

U=J;. (1&a)
Differentiating Eguations (13) and (15) with respect to

time



. 21.1 -21.1
g =——2 bt 2.2 (16b)
2d
r
L ] 1 L ] .
r=—m- (1 1 =1, 1) (17)
d
and
. ol . . 2 2 2 2.2
I e — -2(2 - —
y [8¢°1 1, -8(21, 1 -21,1,)(1° ~1 +d*)104d“1]
2d 2
2 2 2.2 "%
—(17 -2 +d5H%1 (18)
v
-1 2. 2 .2 2. 2 2 2.°
y=-=={8d°1 1 =41 (17 -I +d")1 +41 (17 -1° +d“)1 3
4d
2.2 2 2 5 5 "%
[4d” 1" —(1] -15 +d®)°1
1 2 3 2 2.3 2 2 2.0
P 5 - ¢ ) a1 o -
[eBd®1 ~41] +41,15 41 d¥)1 +41, (1] -1 +d“)1 3
4
rea?12 (2 -2 +g®)21 (19)
1 1 2 ‘
Rewriting the Equations (17) and (19) vyield
%=1, /)1 —(1,/d)1, (20)
anid
2 2 2 2 2
1 (g +1, =1 ) 1,(d +1 =1, )
VS 1, + e 1. 21
ac 1 ao 2
where
o=t4d?1® -(12 -12 +d2)23% (22)
' 1 1 2 =

13



Writing in vector form

[\, A A ML
| =] 1 2] 1 (23)
R A3 A4-'{-12
Thus the matriu
A AT
g={ 1 2 (24)
& A
3 4 4

iz the manipulatcr Jacobian.

Where

G =1 /d « & ==1 /d A =01 (d%+12 -12 y3/d0
2 2 3 1 2 1

and A= [1 (d2+1® =12 y1/d0 .
4 2 1 2

Fote that the elements of the Jacobian are functions of
joirt displacementes. and therefore VEary with the arm

configuration.

5.1.3 ACCELERATION DERIVATION
The linear acceleration of point F with respect to
Cartesian system can be cobtained by differentiating

Equations (20) and (21) as the following:

. 3

P .2 . 2
w=(1 /d)1 ~(1 /d)! +1_ /d - (25)
1 1 2 2 1 Lya =

4 A



or

- . . 2 2
n= - +1 - /d (2s)
[11 11 1212 ]1 12] c
2 2 2 2 2 2 2 2
(Bl' +21 125_1 -=21 1 ) QB d H_l —EE E (115_—113 5 1
;: —————————————————————— e o e e e e e
3
di ao
2 2 2
11 E-l (E'-212 +dL.L ]2 ]1 12 ~c1212) 12 Elz
+(———=)] + e ———— +((————— )
ao 1 ge do 2
2 2 . . 2.2
44d E21l 111212 :Bz(lllllzlz—lzlz)
e e e e e e e e (27)
di
where
2 2 2 o 2 2 _42 N
El—d + 5 —Jl and ﬂz—d +11 12 (28)

S.2 DYNAMICS OF THE_ MANIPULATOR

The dynamic behavior’ can be described in terms of the
rate of change of the arm configuraticon in relation to  the
joint torgques exerted by the actuater [331. Eguations of
moticms. govern the dynamic reponse of the arm linkage to

input joint torgue. There are two methods to obtsin the




equations of motion: Newtcn~Euler, and Lagrangian

formulation.

5.2.1 NEWTON-EULER FORMULATION

4

The eguation o motion 1s devived by the direct

dynrnamic system interpretation of Newton’s Second

Law of Motions. which describes dynamic system in terms of

force and momentum. The eguaticons include the conmstraint

forces acting between adjacent links which must be

eliminated. The dyvnamic equations of & yigid body can

alsc be representec by twe eguaticns:

iYHewton s eguaticn of motion for a mass pavrticle, which is
the translaticonal motion of the center af Mass
(centroid). For & vigid body where center of mass is

accelerating with VC » the force F. acting at the cevnter of

MaES 1S

Fi=miVCi (291

N

wheres m is the total mass of the body. Vo, o the linear

velocity of the centroid of link 1 with ivespect to the

base coordinates {(inertial reference frame ), and mivci,

inertial force [153.

ii1)Eulere eguaticon of motions. which is the rotational

16



moticon of the centroid. For & vilgid body rotating with
angular velocity ws and angular acceleration w » the moment

Ny, which must be acting on the body to cause this motion is

N=I w +wxl w (30)
c c
where 1 is  the inertia moment of the body. ICQ inertia
c

teorques and Icw is the angular momentum.

5.2.2 LAGRANGIAN FORMULATION

In the Lagrangian method, the system dynamic behavior

iz dezcoribed in terme of work and enevgys wsEing genersalized
coordinatecs. A1l the workless forces and covetraint

forces are automatically eliminated 1n this methad. The
recsultant eguations are generally compact and provide &
cloesed-form expression in terms of joint torquez and  joint
displacements. Furthermore, the derivation is simpler and
move systematic than in the Newton-Euler approcach. As  in
kinematics, we need to solve the inverse problem of
finding the necessary input tocorgues to obtain a desired
cutput motion (inverse dynamics).

et Qg s+ ..cv..» g be genersalized coordinates. T  and

1 n

the total kinetic and potential energy stored 1n the

dynamic system. We define the Lagrarmgian "L by
) Y C = »

17




(g )
Ve ‘, / q ) aL/ q ""'O 1 - e w e oall )

wherse @, 1s the generalized forces corresponding to the
i

generalized coordinates qi.

S5.2.3 EQUATIONS OF MOTION

To formulate the equations of motion of the robot. we

emplay the Lagrangian and Newton—-Euler approaaches.

i) L agrangian method

Fig. & represents the forces &cting on the robot
system. The vobot task 1s to keep 1in contact with  a
reaction surface while malntaining & constant applied
force fb . This tashk cccurs for example in the process of
painting a surface. The robot is moving 'in a horizontal
place {te the right)s while maintaining a constant
vertical force on the reaction table. For simplicity, we
ass=ume that the table is smooth  enough s that the table
friction is negligible, joint and actuator friction are
alec rnegligible. Therefores the reaction force will be
ovrmal to the hand (fy).

Using the Lagramngian formulation,. we will devive the

egusticnre in terms of the twe independent joint variables,

18
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the length 1l and the angle el fte11.
We begin by computing the velccity of the centroide

s C and the end—-effetor F. From geometry. the

C
1l 2

Cartesian positions are

=] cos (232)
1 1
vy =-1 sin (34)
L I b
oo =(1 /E)CDS%- (3Sa)
Ccl 1
and %ﬂ.=—(11/2)51ﬁel {3559

Similarly,

%q=d—(1q/8)coseﬁ (3&a)
A\ < rA

and y .o =—(1/2)=i1in ¢ (3&b)
c2 2 2

To eliminate 92 and 12 from the eguaticrne. we can write

e g, =d~—1 =3 (373
11 cc el d 12 cc 92
and —llsinel=—1zsinez (289
Substituting from Eqs. (37) and (38) intc (36a) and (36b)
we cet
3 =g-(d~- < Y/ e2=1( ' /e ==

co d-(d llcc el)/E 'd+1lccsel) c (39}

i r _==1_8ir (40 )

and Yoo 1ld1nel/2 (40)

Differentiating the above squations with respect to time

vielde the Cartesian velocities as

i9



1 (=) "1 3 8
150587 BINe 6
v = = = (41)

Y —1151nel—llc0591%.

COs -1 sin 1 1
& 1 ®

€in -1 cocse
At 1 14L8

and

( S 9. — j 6. ) /2
11 ccsel llslnelel c
V.=V = (42)

—(11 51ﬁ91+11C05616ﬁ/3J

The magnitude of the velocity vectorse can now be computed

el
2 2 2 S22
) =4} =
Vay =Mag =03y ) +Cy ) (43a)
or
Vz =U2 =1/4[(i cos 6 ? +(1 =sineg é? -21 i sing cosg. g, 1+
(i B o) 1 1 1 1 % 1°1 ! 14
1/760(1 sino.f +(1. cos . 6% +B1 1. sing cosg. 6. 3
1~ 1 1 171 11 1 171
(43b)
s o 2 2 2
(' VC1=VC2=(11+H_%.)/4 . {43c)
Similarly.,
.2 22
VP =1l+1161 (44)

The kinetic energy of a mass m with linear wvelocity V and
angular velocity w is
— 2 2 e
T=1/2 m¥V +1/2 1w {45
Nocte that as we assumed point mass, then the moment of

. N 2
irertia IlmIZ=U s thus Iw =0.




2
T=E(1/2 m_V, ) 1=1,....sN (46a)
1 1
T=1/2 M V2 +1/2 M V2 +1/2M V2 (46b)
1 c1 2 @ 3p

where Ml, Mz and M3 are the masses of the two linear
actuators and the IEE. respectively. Substituting the
values of the velocities into (46b) yields

L2 02,2
T=[(M_+M_)/8+M_/21(1_+lg ) (46c)
12 3 1 11

The actuatorse are as=umed ta heave identical TSSESES

M1=M2=M . This assumption changes (46c) to

2 2,2
=(M/a+M_/2) (1 + . (46d)
T=(M/4+M, 72) (1 41, 6 )

Noew «» we find the potential energy, using the formuls
F=mgh (47z)

where h ic the height and g the acceleraticon of gravity.

Thus,
F =Mg(-1_sine_/2) (47b)
179 1
= - ; 3 (48)
5 Mg { 1251ﬁ92/8)

% =M3g(—115iﬁ61) (4%9)

where from Eq. (38)
i 2=1_s3 . (49a)
1151\;91/: 12 in esz 4Ga




The total potential erergy 1s
F=F) +F, +Fy =—(M+Mj)glysin g, (S50)

We now combine Equations (4é6d)  and (3S0) to produce the

Lagrangian for this manipulator

2 2.2
L=T-F=(M/4+M3/2) (1] +1; ) +(M+M3)gl) sine, (51)

The free-body diaegram of the Linmk 1 1z shown in Fig. 7.

The total force applizd on the system 1s

F=fm1'*h2 ccse—fysinel (S52)
where 9=n—(61+62) . (S22
Therefore.s

F=fml44h2 c05(91+92)—fysiﬁel (Sa)

Althcugh there is not any torque about 6 but when the
second link is extending or contractings it makes the first

aore to rotate. S we cann state  thet the forces f

m2 and

fy apply & towrgue abocut gp as the following:

Té=#h21151ne —fyllcs;el (55)
[uh;
Teztﬂﬁ sin(61+62)+fyc0561]11 (546}

3
8]



In Eqguations (55) and (56) f is cushing
ml

pulling. Usimg Equation (32) we carn find

applied by the linear actuators by considering

sl .

- =(M/E’+M3)l1
2l
1

d a L .

—— e = (M/24+M ) ]

dt ol 31
1

aL .2
———— =(M/E+M3)llel+(M+M3)gsinel.
31
1
Therefore.,
.o 2
F=(M/2+M3 )1, —(M/2+My ) 1) %;«M+M3)gsinel

Similarly, from the torgue

aL 2.
———— ={M/2+M )1 ¢
aé 3 11
1
o aL - . 2 e
——— ——-= =(M/E4M_)(B1 1 ¢ +1 g)
dt ad 3 1171 1
1
sl
———— ={M+M )gl cocsgy .
- 3 e 1 1
1
Thus.
-, 2 .
T o=(M/2+M ) (21 1 g +1 6 )-(M+M )gl cos
o (M7E+M Y (2L 1) By *l) 8 3784 €058

Substituting the values of F  and Te Trom (3549

inta Equations (60) and (&64) vield

23

and

the

(&0)

(610

(&2

(63)

(&64)

f ie
m2

foarces



-
<
.

s (6 6.)—f gind,= D4} = -
ﬂm.+fm2cc,( 1t 2)'@ in 9 (M/L+M3)11 ™ +N3)llel
(M+M3)gsinel (&6S)
' < 3 VS = S .é -
ﬂn _1n(91+62)+fycc..6l (M/E+M3)11%_+(M,d+M3)(EH_1 )
(M+M3)gc0591 (b6E)

To write the above sguatiorns in terms of joint variables 1l

and 8y » we must sliminmiate 8. From trigonometyy we obtain
cos(91+92)=c0591C0592~51nelsin92 (&7)

Substituting the values of cesd, anc  siivl, from Equations

(37 and (3B) 1into (67) we get
cosi ®+ Sy=cos 8,0 {d~ljcas6y)/i,d-sirme {11 singy )/ 1, 3 (&68)
o c05(61+92)=(dc0591—11)/12 . (&9

Similarly,

5in(91+92)=5ihelc0592+coeelsinez (70

(o
sin( 8, + 6, )=sinel [(cl—l1 cos0y )/12]+c0561[(11 sinel )/121
=d sinelflz (71)

From Fig. 6. we obtain

2 2 2
12=d +11—Ed11c0561 (721
- ~ 3 .
L P4 < b= -
12=(11+d —Edllcozel) (727

Substituting 15 into Equations (69) and (71)

=L



dCGS%.—ll

tos(g +g )r——mmmmm e (74)
1 "2 2 2 "
(1 +d -2dl_ cosg )
1 1 1

and sin(el+ez)= ———————————————————— (73)
2 2 %
(1 +d -2dl co=s g )
1 1 1

Equations (65) and (66) carn be rewritten as

. 2
f_o+7T _al(t)-f sine =k_1 -k_1¢ -k_gsineg (7&)
ml  m2 y 1 11 171°1 2 1
f _bit)+f cose =k ¢ +2K. 1 g -k - (77)
m2 y SO0 TR 8 TR 4 8 TRaC0Sg
where
c =M/+ Tk =M+ (78)
b =M/EM, H =M (78

a(t)=(dcosel—ll)/c(t) ;b(t)=d5inel/c(t);

2 2 %
( = + - () . ( )
ci(t? (ll d Edllccsel) 79
and f and T are actuator forcees. The force f
ml m2

ie the reaction force produced through contact with

the reaction surface and is modelled as follows:

—HE(y-yE) when in contact Cy—y_ )0

L ctherwice (V”VE)EO
whers yE and HE dencte the position and stififrness of the

reaction surfaces respectively [21. The consant KE is




6
typically of the crder of 10 n/m for & stiff environment.
The term 2k;1; 8;in Eq. (77) represents the Coriclis
force acting on Link 2 due to the Coriclis effect (when &

mass particle m moves at  a velocity of V relative to

i)

moving coordinate frame votating at  an angular  velocity
wsy the mase particle has the sc-called Coriclis force given
by 2m(wxVy). The last term hzggiﬁel and HZ gcosel i
Equations (7&)  and (77) eccounts for the effect of
gravity. The secoend term on  the ryight side of Eqg. (761
which 1¢ propoeytionsl  to the sguare of the joint

velocities shows the centrifugel force.

I order to reduce the computation time For  the
simulaticn of the robot systesns the egquations of motion in
termz of the Carteszian variables X and Y are needed.
Fig. 8 illustrates the firee btody disgram of each link of
the robot system. Applying Hewton formulation for IEE.

we obtain

le +F2X ::M3;.§ (81)
_Fly +F2y -M 3g+fy=]"1 3Y (82)
Frnowing  that Ver=Ve2=Vp/2 » for Links 1 and 2 we can

write

2&




f cosg —-F =M n/2 (82)

ml 1 1x
-f sing +F M =M:/E (84)
ml el ly & !
f cosg —F  =Mu/2 (85)
m2 2 2x
f eing -F —-Mg=My/& (85)
m2 2 2y
Substituting the values of i anrid Fé from Equationz (83)
X X
and (8S) inte (81) and F s F from (84) and (86 into
ly 2y

(82), and using the relations of (35) and (346), we cbtain

f (/1 )y+f C{d-x)/1 =K « (g7)
ml 1l m2 2 2
bl {(yv/1 )y—~F (/1 Y+ =} y+ (28
m 7 Tme Ty T YT
where b =2M+M (8%)
3 3

and 11 . 12, » and y are rvelated through Egustions (7))

and (8).

5.3 HYBRID CONTROL OF THE 2-DEGREE-OF-FREEDOM ROBOT

The block diagram of the hybrid control system is
shown 1 Fig. 9. Both position and velocity feedback are
employed to improve the response. we assume that the robot
ie to move fyrom the initial position xi=A, v. =B  to the

final position xf=nd » while exerting a force %y =ﬂ) in

n
~J



the wvertical divection. Manipulator ig  moving  in &

horizontal plane so that gravity may be i1gnored [&83.  The
decired velocity in X divection will  be xd=Ol while in vy

direction 1e zerc.

S.3.1 POSITION AND VELOCITY CONTROL

For a 2-degree-of-freedom vobot the selecticon matvrin
defined in Eg.(1), will be

"
ERIE

lo 1)

Sivce we are interested in controlling position in

direction (s =0), and force in Y divrection (s =1),s the
11 [Q 07
covvresponding compliance matrix i E=
Lu 1
Y U] {C) (BN (1 0
and [11-[51=]| - | = (90)
o 1] {o 1| lo o
L o . - |-

where 11 1 the identity matriw. The positicon error is

fﬁd fedt) A #{t)7] TA-=(t)
AX(t)=X_- A(g(t))= - = - = {91)
d y vior| |B] [ycer] [B-y(t)
a L
This ervor is mapped into  the pesiticon controlled

subspace. The compliance mativix 5 serves as =2 mask to
zeparate the force controlled and position controlled
degrees of freedem. The Cartesian ervor signals are

cbtained as

% (1) M1 0)[A-={t)] [A-u(t)]
X (ty=| © ={[I1-[8I38%(t)= = | (92)
€ y (t) 0 O By (t) o |
e

28



Transforming them back inte the joint space. we find the

corresponding  joint variables errors. Since X - 1s a
e

differential change, we can use the Jacobian to find the

corresponding  (approximate) differential change 1n  the

vector of joint varizables

1 _¢t)
qey=| *
12(t)
Recalling J from Egquatien (B4) we find 1ts inverse as
foellows:
-1 AdjiLI]
J m—me— e (G3a)
DetlJl
where 2 2 2
- . _ A
lz(d 11 12 ) 12
de d
Adj’3!= (93b)
2 2 2
1.(d +1_ -1_ ) 11
i d@ d |
and 2 2 2 2 2 2
1l 12(d +ll -1, ) 12 1l(d +12 -1, )
DetlJ!=——— —————————————— + e e e (93c)
d d d at
2 2 2 2 2 2
1112(d +11—12+d +12 —H_ )
DetiJl= ——————————————————————————— (93d)
‘ 2
d @
211
Det|J|=—--2- (93e)
5]

a9



Therefore,

2 2 2

_ 2 2 172
L -1, +q‘ [ad 1 —~(1; -1, +5 ) 1]
-1 2l,d 2hd
= (94)
2 2 2 2 2 2 2 2 5 12
2l,d 21, d ]
Fer simplicity, we define
-1 "El Ea
J = {95)
[E3 Eq)
where By "= are given ivm Equation (94, Thus
_1e1 (t)] -
g (t)= =J % () {26)
€ lez(t)J
1=y EZW{Q—“(t)W EqfA—x(t) ]
q (t)= = (F7a)
e : - —
E3 Egll o | [Esfa-xcdd
The ervror in joint variables will be
1 (t)=Ej [A-x(t)] (97b)
el
1 (t)=EzlA-x(t)] (F7c)
e2
Applying the same method for velocity control, we find
. . . [ 7 [t 6 —%(t)]
AY (t)=X ~Alglt))=] d}— §={ 1 | (98)
d 5 y Y —w i
IL,d lytr ] jo yit)]
. (b [ 0116 ~% ()] [0 —x(t)
€ y () O OO —y(t) 0
e L




g (tr=| el =J X (t) (100a)
e 1 (1) e

e2
. Ey Ex )@y —-x(t) By [0)—x(t)1]
q (t)= = . (100b)
e -~ . —_—

= Egqll © E3 [0y -3 (t)]

Therefore, the error in joint velocities will be

1 (t)=E [D —-u(%)] (100c)
el 1 1

1 (t)=E [0 —-u(t)] (100d)
e2 3 1

Toe move the joints and reduce the error, we

{(proportional derivative) controller for position.

w =g ()L 1] (101a)
P € rp

v =g (t)0K 1 . (101b)
P e rpd

The ervor in lengths due to the ervor In position and

veloccity are

u (t)=u (t)+v () (102a)
rp p P

Fer Link 1 we get

u (t)=1 (tik +1 (i) (102b)
rpl el rpl el rpdl

and for Link 2

u (t)=1 (toik +1 (L) {10Zc)
rp2 e2 rp2 e2 rpdz2

Substituting the values of 1 » 1 « 1 « and
el e2 el

intoe (102b) and (102c). we cobtain

w {t)=E (A-u(t))K +E (O —-u(t)Ik {(103x)
rpl 1l rpl 1 1 rpdl
u tE)=E {A-x{t))EK +E (O ~x{t))IE (1036)
rp2 3 rp2 3 1 rpd2

31
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5.3.2 FORCE_CONTROL

d
x
and the actual force F(t)= » the ferce errov i1s computed
.f
t Yd
as
Q T (t) r—fx(t)
AF(t)=Fy (£)-F(t)= - =[ (104)
fO_. Lfy (t)-’ 0 _fy(t)_;

Note that the cocordinate syetem 1 parallel to the
constraint frame. Sos the force tranmseformation matieris is

-
Oy

[y

1

rE‘_———.\

The Cartesian error signal 1s computed by

—fxe‘I )

Fo(t)= =[SIAF (L) (105a)
[ fye ]
) o'l l’-—fx (t)H O

F, (t)= = (105b)
0 1_! t'fo ~fy () o =T, ()

The corresponding Joint space ervor is found by

. T A
Tett)——::r F‘e (t) (10&)
@el 1 T ] )
where Te(t)= ‘ and J ig the Jacobian trarmspose that ie
fnﬁ

derived ac
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J

2 2 2
~ . _
1l 1. (d +1 1l
d g
T
J = 2 2
-12 12 (d +1 —12
d af
For simplicity, we defirne
then
. . FC—;l G, 0 ~
€ (t'-[~ G, | [f. - |
G3 41170 7Yy |
(a0
ﬁel(t)=62(f0—fy)
'ﬂez(t)=64(fo—f§)
Fovr force cormtrol.

contraller. Therefare.

erroy in force will be

W TI=K rfl frel (t)=kK

1 <t

TRPRE S S P (t
) & W4

"rf2 ‘re2

Y =

Finzlly the inputs to the linear actuators

“re1 G2

Y=g Ba (T

=3

we will use FE

the error

(fo—fy(t))

£ -f
y

(t))

(107)
G
2 (108)
G
4.4
(109a)
(109b)
(109c)

(proporticomal ervor)

iv lengths due to  the

(110&)

(110b)

(110c)

are computed by



e (t)=u +u = (A-u(t))HK +E (O —ux{t))k +

al rpl rfl 1 rpl 1 1 rpdl
G (f —-f (t))K (111)
2 0 vy rfl
e {(t)=u +u =E (A-x(t))E +E (G - (t))K +
a2 rp2 rf2 3 rp2 31 rpdz2
Gaff ~f (K (112)
0 Y rf2

5.3.3 LINEAR ACTUATOR_DYNAMICS

Since ne  tranmsient analysie of DC linear motor
is available, we assume that its dynamics 1s
identical to that of DC motor. By neglecting the armature
inductance and the lead tovrgques the transfer function

between the motor actuating fovree and the input voltage Ea

1s cbtained by [27]

————— T e (113)

where we assumed that F (S)=K T (8) and

m m
F =armature resictance

a

=rctor inertia of motor

m
k. =back emf constant

b
K =torque constant

i

B =viscous frictional coefficient
m
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6. SIMULATION

In ovrder to examine the behaviocr of the proposed
hvbrid contiraller. we conducted several simulaticocn
rune . of the system. The robot dynamics and the hybrid
contvoel  scheme are simulated using the System Simulation

2
Language (SYSL) developed by E  Consulting for the IEM FC.

6.1 RESULTS AND DISCUSSION

Fig. 10 shows the ryesponses of the system that was
contiroclled to stay at & fixed poszition X =10 cm. Y =-10 cm
while mainting & constant force F =90 N. The responcses had

emall  overshoots in vertical force and position. which is

cavsed by the initisl forces of the motors (£, and £ =6N).

ml m2
The settling time was about 0.1 sec. The error in the
-4
horizontal position was about 10 cm and Was= not

recoerded 1n the graph.

Figures 11 and 12 depict the responses of the vobot
centrolled to move from X =0 to ¥ =1 cm horizontally while
kbeeping a constant force F =90 N o the reaction
suwrfzce. The response shows  that the robot reached the
destination in 0.5 sec in an  "overdamped" fashion. The
average veloccity in Fig. 11 is 8 cm/sec and in Fig. 12

7cmszec.  The firset case shows higher overshoot but faster

Iy
a




recpoense. The vertical force and position were cettled

atter about 0.1 sec with relatively small overshoots.

Figures 13 and 14 demonstrate the contval of
force in  the presence of position distwrbances. The
controller attempts to maintain a censtant g0 N

foerce at a fixed horizontal position on the reasction
table while the table is moving away from the robot in
y directien at a constant rate 0.1 cm/sec (Fig. 13).
and ©.08 cm/sec (Fig.14). The guality of the force was
guite good while there was some disturbance in the
horizental peosition (about ©0.01 cm error ). When the
surface stops moving (after 1 sec), control retuwrns to a
cstablie steady state. At the end of the ramp where there
are acceleration there was & little distuwrbance in  the
force. In these figures, we note that the vertical
position follows the movement of  the table closely.

In &ll simulation runss the controller gains, actuator
parameters and robot masses are adjusted until & estable
respanee with little overshoots is achieved. Controller
feedback gains and the rumerical values of parameters used

ivn simulation are given below

k =3%7. N/m K =25. N/m
rpl rp2
k. =} =25. N/m B =}k =0.3
rpdl rpd2 rfl rf2
M=3. kg M =3.5 kqg
3
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. =910 N/m d=23 cm

1 =1 =15 cm

7. CONCLUSIONS

In thie report the hybrid control was proposed to
cont ol the caompliance of the existing NASA robot.
A etudy of coordinate transformation of the IEE showed that
1its fTorward kinematic problem deoes not have a closed-—
form solution and consiste of nen—-linezr equationse which
Newton—Raphson’s method was employed to scolve it.

The kinematicss dynamics and hybrid controller of the
2-decree—cf-freedom robot were presented and its
simulation results were discussed.

Even though we obtained some good results, ne clear
relationship between the controller ogains and system
resconses have been obtained. Further research can focus
o *he development of & guideline to select controller

gairz fovr stable and responsive robot svstems.
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Fig. 1A
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The NASA Passive Compliant Robot System
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Fig. 1B : The Passive Compliant Platform
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Fig. 3:

Particular Orientation of Robot
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Fig. 4: Vector Relationships for Actuator i
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Gimbal
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Fig. b H

The 2-Degree-of-Freedom Robot
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Fig. 6 : Forces Acting on the Robot
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Fig. 7:

The Free-Body Diagram of Link 1
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Fig. 8: The Free-Body Diagram
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Fig. 10: Responses of the Robot for Control of Constant Force

and Fixed Position
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